HIGHER SECONDARY SECOND YEAR PUBLIC EXAM MARCH - 2023 CHEMISTRY

ANSWER KEY (EM)

TYPE -A		TYPE -B	
1	c, Antacid	1	a, NaCl
2	c, Activation energy	2	a, Uracil
3	b, Al	3	c, Antacid
4	c, [Cu(NH ₃) ₄] ²⁺	4	d, +3
5	d, Gel - butter	5	b, Ehtane-1,2-diol
6	d, HCl	6	a, sp^2
7	a, sp^2	7	b, Al
8	d, +3	8	a, Schiff's base
9	d, Both Assertion and Reason are true and	9	b, 0
	reason is the correct explanation		
10	c, Rn	10	$c, [Cu(NH_3)_4]^{2+}$
11	b, 0	11	c, Activation energy
12	a, NaCl	12	d, HCl
13	a, Uracil	13	d, Both Assertion and Reason are true and
			reason is the correct explanation
14	b, Ehtane-1,2-diol	14	c, Rn
15	a, Schiff's base	15	d, Gel - butter

- 16, Sulphide ores can be concentrated by froth flotation method.
 - Eg. Galena(PbS) and zinc blend (ZnS).
- - Lubricants
 - . High temperature oil baths
 - water proof cloths
 - Mixed with paints to make them resistance towards high temperature, sun light etc..., (Any 2pts)
- 18, The central atom/ion is the one that occupies the central position in a coordination entity and binds other atoms or groups of atoms (ligands) to itself, through a coordinate covalent bond.
- 19, Face centred cubic unit cell :-

Identical atoms lie at each corner as well as in the centre of each face.

The total number of atoms in a Face centred cubic unit cell

$$= \frac{N_c}{8} + \frac{N_f}{2} = \frac{8}{8} + \frac{6}{2}$$
$$= 1 + 3 = 4$$

- N_c Number of atoms at the corners.
- N_f Number of atoms at the face.
- 20, Chemical species that differ only by a proton are called conjugate acid base pairs.
- 21, Certain substances when added to a catalysed reaction either decreases or completely destroys the activity of a catalyst and they are often known as catalytic poisons.

22,
$$\begin{array}{c} CH_3 - CO - CH_3 + 4[H] \xrightarrow{Zn/Hg / Con HCl} \\ Acetone & Propane \\ CH_3 - CO - CH_3 + 4[H] \xrightarrow{NH_2 - NH_2 / C_2H_5ONa} \\ CH_3 - CO - CH_3 + 4[H] \xrightarrow{NH_2 - NH_2 / C_2H_5ONa} \\ Acetone & Propane \\ \end{array}$$

- - ❖ It limits the blood stream and induces a physiological response in other tissues.
 - Endocrine glands, which are special groups of cells make hormones
 - . It is an intercellular signaling molecule.
 - . Eg. Insulin, estrogen.

24,	$CH_3 - CH_2 - NO_2 \xrightarrow{Sn/HCl} CH_3 - CH_2 - NH_2$ (A) Ethyl amine				
	$CH_3 - CH_2 - NH_2 + CH_3 - COC1 \longrightarrow CH_3 - CH_2 - NH - CO - CH_3$ (B) N-ethylacetamide				
				, ,	
25,		500-700K,le	ss tha	n 50 atm	
,	nC	$O + (2n + 1)H_2$		$\xrightarrow{\text{n so dem}} C_{n}H_{2n+2} + nH_{2}O$	
				. 2.11.2	
		500-700K,less th	an 50	atm	
	nCO	$O + 2nH_2$		$\begin{array}{c} \longrightarrow C_nH_{2n} + nH_2O \\ \text{Actinoids} \end{array}$	
26,	Sl.No	Lanthanoids			
	1.	Differentiating electrons enters in orbital.	4f	Differentiating electrons enters in 5f orbital.	
	2.	Binding energy of 4f orbitals are h	igher.	Binding energy of 5f orbitals are lower	
	3.	They show less tendency to form		They show greater tendency to form	
		Complexes.	_	complexes.	
	4.	Most of the lanthanoids are colour	less	Most of the actinoids are coloured. For Eg.	
		The desired from		U ³⁺ (Red), U ⁴⁺ (Green), UO ₂ ²⁺ (Yellow)	
	5.	They do not form oxocations		They do not form oxocations such $U0_2^{2+}$, NpO_2^{2+}	
				(Any 3 pts)	
27,	a) Central i	metal atom / ion	Pt ²⁺	(23, 2 pm)	
		nation number	4		
	c) Oxidatio	on number of central metal ion	+2		
28,	The surf	face of colloidal particle adsorbs on	e type c	f ion due to preferential adsorption.	
	* This layer attracts the oppositely charged ions in the medium and hence at the boundary separating			e medium and hence at the boundary separating	
		electrical double layers are setup.	7, 1		
20		called as Helmholtz electrical doubl			
29,				an electrode during electrolysis is directly	
	proportiona	l to the quantity of charge (Q) passe mαQ	ea uirou	gn the cen.	
	m = Z It Where, m – mass of the substance, Z- electro chemical equivalent of the substance,				
		I- current in Amphere& t- time i		, , , , , , , , , , , , , , , , , , , ,	
	Second Lav	•		ssed through the solutions of different	
	electrolytes.	, theamount of substances liberated	at the r	espective electrodes are directly proportional to	
	their electro	chemical equivalents.			
		mα Z	_		
20	Whe	ere, m – mass of the substance & Z-	electro	chemical equivalent of the substance	
30,	*H ₃ N – CF	1-000			
	R				
	V	, Neutral pH , (Isoelectric point)			
31,	O	O		0 0	
.,	ĬĬ	ĬĬ			
	CH C (OCH CH HCH C OCH	CH	$\xrightarrow{C2H5-ONa} CH_3 - C - CH_2 - C - OCH_2 - CH_3$	
		acetate $-CH_3 + HCH_2 - C - CCH_2$	- C113	Ethyl acetoacetate	
32,			etardin	g or arresting the process of fermentation	
,		or other decomposition of food by			
	Examples:				
	i. Acetic acid is used as a preservative for the preparation of pickles.				
	ii. Sodium metasulphite is used as a preservative for fresh vegetables and fruits.				
	iii. Benzoic acid, sorbic acid and their salts are potent inhibitors of a number of fungi, yeast and				
	bacteria.				

www.kalviexpress.in

$$\begin{array}{c} \begin{array}{c} \textbf{33,} \\ \frac{2.303}{t_{99}} \cdot \log \frac{100}{100-99} = \frac{2.303}{t_{90}} \cdot \log \frac{100}{100-90} \\ \frac{2}{t_{99}} = \frac{1}{t_{90}} \\ \end{array}$$

34,	This method is based on Fractional Crystallisation.					
a	The impure metal is taken in the form of a rod					
	➤ When the metal rod is heated with a heater, the metal melts,					
	The heater is slowly moved from one end to the other end.					
	The impurity dissolves in the molten zone.					
	When the heater moves the molten zone also moves.					
	This process is repeated again and again to get the pure metal.					
	This process is carried out in an inert gas atmosphere to prevent the oxidation of metals.					
	Eg.Germanium, Silicon and Gallium which are used as semiconductor are refined by this					
b, i)	process					
0, 1)	$ \begin{aligned} \mathbf{OF}_2 \Rightarrow -1 \\ \mathbf{I}_2 \mathbf{O}_4 \Rightarrow +4 \end{aligned} $					
ii)	$\begin{array}{c} 1_2O_4 \Rightarrow +4 \\ P_4 + 3\text{NaOH} + 6\text{H}_2\text{O} \longrightarrow 3\text{NaH}_2\text{PO}_2 + \text{PH}_3 \end{array}$					
111)	$\begin{array}{ccc} \mathbf{r_4} + 3\mathbf{NaOH} + \mathbf{6H_2O} \longrightarrow 3\mathbf{NaH_2PO_2} + \mathbf{PH_3} \\ \mathbf{XeF_6} + \mathbf{3H_2O} & \longrightarrow \mathbf{XeO_3} + \mathbf{6HF} \end{array}$					
	$Cu + 2H_2SO_4 \longrightarrow CuSO_4 + 2H_2O + SO_2$					
35,a	❖ In diborane two BH₂ unitsare linked by two					
i)	bridged hydrogens.					
	❖ It has eight B-H bonds.					
	❖ It has only 12 valance electrons and are not					
	sufficient to form normal covalent bonds					
	❖ The four terminal B-H bonds are normal					
	covalent bonds (two centre – two electron bond					
	(or) 2c-2e bond).					
	The remaining four electrons have to be used by					
	two B – H – B bonds $(3C - 2e^{-})$					
	Two B = H = B bonds (3C = 2e) ❖ In diborane, the boron is sp³ hybridised, B−H−B bond formed by overlapping the half					
	filled hybridised orbital of one boron, the empty hybridised orbital of the other boron					
	and the half filled 1s orbital of hydrogen.					
ii)	Flame test When Poretes are added with athened and exposed to flame gives green flame					
11)	Conc.					
	$H_3BO_3 + 3C_2H_5OH \xrightarrow{COIC.} B(OC_2H_5)_3 + 3H_2O$					
1	H ₃ BO ₃ + 3C ₂ H ₅ OH $\xrightarrow{\text{Conc.}}$ B(OC ₂ H ₅) ₃ + 3H ₂ O					
b,	Metal carbonyls are transition metal complexes of carbon monoxide with carbon bolids					
	Ex: -[Ni(CO) ₄]					
	a, Mono nuclear Carbonyls: These compounds contain only one metal atom Ex :- [Ni(CO) ₄]					
	b. Poly nuclear carbonyls:					
	These compounds contain more than one metal atom. Ex :- [Fe ₂ (CO) ₉]					
	C, Non – bridged Carbonyls:					
	These metal carbonyls which contain only terminal carbonyls. Ex :- [Ni(CO) ₄]					
	These metal carbonyls which contain terminal carbonyls as well as Metal-Metal					
	bonds. Ex :- $[Mn_2(CO)_{10}]$					
	F W/ : 1 \ \ 103					

www.kalviexpress.in

d, Bridged carbonyls:

- > These will contain bridging carbonyl ligands along with terminalcarbonyl ligands
- ➤ One or more Metal-Metal bonds. For example, [Fe₂(CO)₉]

36,a Schottky defect.

- Arises due to the missing of equal number of cations and anions.
- Does not change the stoichiometry of the crystal.
- ❖ Ionic solids in which the cation and anion are of almost of similar
- size show schottky defect. Example: NaCl.
- . Lowers its density
- Presence of Schottky defect in the crystal provides a simple way by which atoms or ions can move within the crystal lattice.
 Ag/Missing

- Arises due to dislocation of ions from its crystal lattice
- The ion which is missing from the lattice point occupies an interstitial position
- This defect found in ionic solids in which size of anion and cation differ
- ❖ Does not affect the density of crystal Ex : AgBr (Br larger size)

- ❖ Decomposition of N₂O on hot platinum surface
- ❖ Iodination of acetone in acid medium is zero order with respect to iodine

ii) Tanning of leather

- Skin and hides are protein containing positively charged particles which are coagulated by adding tannin to give hardened leather for further application.
- Chromium salts are used for the purpose.
- Chrome tanning can produce soft and polishable leather.

Rubber industry:

- ❖ Latex is the emulsion of natural rubber with negative particles.
- ❖ By heating rubber with sulphur, vulcanized rubbers are produced for tyres, tubes, etc.
- Ostwald's dilution law relates the dissociation constant of the weak acid (K_a) with its degree a, of dissociation (α) and the concentration (C).

Degree of dissociation (a) = $\frac{\text{Number of moles dissiciation}}{\text{Total no.of moles}}$ $\text{CH}_3\text{COOH} \rightleftharpoons \text{H}^+ + \text{CH}_3\text{COO}^-$

Dissociation constant of Acetic acid is

$$K_a = \frac{[H^+][CH3COO^-]}{[CH3COOH]}$$
 ---- (1)

Content	CH ₃ COOH	\mathbf{H}^{+}	CH ₃ COO
initial number of moles	1		
Number of moles Ionized	α		
Number of moles remaining	(1 - α)	α	α
Equilibrium concentration	C(1 - α)	Сα	Са

www.kalviexpress.in

	Substitute the value in equation (1)					
	$K_a = \frac{C\alpha . C\alpha}{C(1-\alpha)}$					
		$K_{a} = \frac{C\alpha^{2}}{(1-\alpha)} (2)$				
	When 1 >> or the denominator is needs	When $1 >> \alpha$ the denominator is neglected so $(1 - \alpha) \approx 1$				
	when $1 \gg \alpha$ the denominator is negle	$(1 - \alpha) \approx 1$ $K_a = C\alpha^2$				
	$\alpha^2 = K_a / C K_a / C$					
	Degree of dissociation $\alpha = \sqrt{K_a / C}$					
	Concentration of acid	$d[H^+] = C\alpha$				
		$= C \sqrt{K_a / C}$				
b, i)	Aniline is basic in nature and it donate		o form an adduct which			
ii)	inhibits further the electrophilic substi					
/	 It is a composition which contains polyamide mixages. It is obtained by the condensation polymersiation of the monomers, glycine and ∈- amino caproic acid. 					
	- HN-CH - COOH HN - /CH)		1 = (CH ₂ + C+ + (2n-1) H ₂ O			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Animocapiote acid O O					
20	Nylon -2-nylon - 6					
38,a i)	H H N $(CH_3)_2$ H N $(CH_3)_3$					
1/	C = 0 + con H ₂ SO ₄					
	-H ₂ O N (CH ₃) ₂					
	Benzaldehyde					
	N, N - Dimethyl anil	ine Malachite green dye	:			
ii)		NH NH				
	CH ₃ CH ₃ CH ₂ - C - CH -CN					
	CH CH C NA CH NA					
	нари					
b)	Propanenitrile Ethanenitrile 3 - imino - 2- methylpentanenitrile $C_6H_5 - OH + Neutral FeCl_3 \longrightarrow Purple colour$					
	$\begin{array}{c} C_{6} \Pi_{5} - O\Pi + \text{Neutral FeC}_{13} \longrightarrow \text{Turple Colour} \\ \text{(A)} \end{array}$					
	$C_6H_5 - OH + NH_3 \longrightarrow C_6H_5 - NH_2$					
	(B)					
	$C_6H_5 - OH + Zn \longrightarrow C_6H_6 + ZnO$ (C)					
	Compound	Molecular Formula	Name			
	(A)	$C_6H_5 - OH$	Phenol			
	(B)	$C_6H_5 - NH_2$	Aniline			
	(C)	C_6H_6	Benzene			

V.SURESHKANNA PG ASST GHSS THIRUMANJOLAI