DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI-6 HIGHER SECONDARY SECOND YEAR EXAMINATION MARCH/APRIL-2023

KEY ANSWER FOR BOTANY

NOTE:

- 1. Answer written only in BLACK or BLUE should be evaluated
- 2. Choose the correct answer and write the option code
- 3. If one of them (option or answer) is wrong, then award zero mark only

Maximum Marks: 70

Part - I

Marks should be given only the option code on the corresponding answer is written. Answer all questions: $15\times1=15$

Q.No.	Answer - A	Answer - B	Mark
1	c. (I)-(iii), (2)-(iv), (3)-(i), (4)-(ii)	a. Capillary water	1
2	a. 9 : 7	d. Functional megaspore	1
3	c Dr. M.S.Swaminathan	c. (I)-(iii), (2)-(iv), (3)-(i), (4)-(ii)	1
4	d. Functional megaspore	b. Tropical African region	1
5	c Ozone	a. 9:7	1
6	a. Capillary water	c. Agar	1
7	c Brazil	c Dr. M.S.Swaminathan	1
8	b. Tropical African region	c Ozone	1
9	c. Agar	d. Areca catechu	1
10	b. Blue, Red	a. Law of Segregation	1
11	b. DNA -> RNA -> Protein	c Brazil	1
12	a. Law of Segregation	d. Soil	1
13	c. AUG	b. DNA -> RNA -> Protein	1
14	d. Areca catechu	c. AUG	1
15	d. Soil	b. Blue, Red	1

	<u>PART – II</u>	
Answer	any six questions. Question number. 24 is compulsory.	6×2=12
16	Cantharophily:	_
	Pollination by beetle	2
17	Names of scientists rediscovered Mendelism:	
	Hugo de vries,	
	Carl Correns,	2
	Erich von Tschermak.	?°
18	Intragenic gene interactions:	
	Interaction takes place between the alleles of same gene .i.e alleles at the same locus is called intragenic or intralocus gene interaction.	1
	Classify gene interaction:	
	1.Intralocus interactions(Allelic interactions)	1
	2.Interlocus interactions(Non-allelic interactions)	
19	Gene mapping:	
	The diagrammatic representation of position of genes and related distance between the adjacent genes.	2
20	BamH I amp ^R - Ampicillin Resistance Gene pBR322 tet ^R - Tetracycline Resistance Gene Diagram labeling the parts	2
21	Somatic Hybridization:	
	The fusion product of protoplast without nucleus of different cell is called cybrid. Following this nuclear fusion happen. This process is called Somatic Hybridization.	2
22	Seed ball:	
	Seeds in a mixture of clay and soil humus(also in cow dung) and scattering them on to suitable ground, not Planting of trees manually.	2
23	Green manuring: Is defined as the growing of green manure crops and use of these crops directly in the field of ploughing.	2

24	Differentiation ReDifferention	
	3. Dedifferentiation (Any two)	2
Answer	PART – III any six questions. Question number 33 is compulsory 6 x 3	3 = 18
25	Differentiate Grafting and Layering:	
	Grafting Layering	
	parts of two different plants are joined so that they continue to grow as one plant. Of the two plants, the The stem of a parent plant is allowed to develop roots while still intact. when the root develops the	
	plant which is in contact with the soil is called stock. and the plant grow as a new plant.	3
26	used for grafting is called scion .	
	Different types of aneuploidy:	6×1/2=3
	Disomy Monosomy Double Nullisomy	
	(normal) $(2n-1)$ Monosomy $(2n-2)$ $(2n-1-1)$	
	Trisomy Double Tetrasomy Pentasomy $(2n+1)$ Trisomy $(2n+2)$ $(2n+3)$ $(2n+1+1)$	
	Diagram (Any 6)	
27	Capping:	
	Modification at the 5' end of the primary RNA transcript(hnRNA with methyl guanosine triphosphate is called Capping.	1 1/2
	Tailing:	
	,	1 ½
	known as poly(A) tail-polyadnylation.	
28	Benefits and Risks of genetically modified food:	
	Benefits:	
	1. yield without pest	1 1/2
	2. 70% reduction of pesticide usage.	
	3. reduce soil pollution problem	
	4. conserve microbial population in soil.	

	Any three only	
	Risks:	
	affect Liver, kidney function and cancer.	
	2. hormonal imbalance and physical disordered	1 1/2
	3. anaphylactic shock(sudden hyper sensitive reaction) and allergies	
	4. Adverse effect in immune system because of bacterial protein.	
	5. Loss of viability of seeds show in terminator seed technology of GM crops.	
	Any three only	
29	Objectives of afforestation: Any three Objectives	3
30	Ecological Hierarchy:	
	The interaction of organisms with their environment results in the establishment of grouping of organisms which is called Ecological Hierarchy.	1
	Levels of Hierarchy:	
	Biosphere	
	↑ Biome	
	A	
	Landscape	2
	Ecosystem	
	\uparrow	
	Community	
	population	
	\uparrow	
	individual	
	↑	
	organism	
31	Microbial inoculants used to increase the soil fertility:	
	Efficient in fixing nitrogen	
	Efficient in solubilising phosphate	
	Efficient in decomposing cellulose Improves soil fortility	
	Improves soil fertilityImproves plant growth	3
	 Improves plant growth Improves the number and biological activity of beneficial micro 	
	organisms in the soil	
	➤ They are eco-friendly organic agro inputs	
	➤ More efficient and cost effective than chemical fertilizers	

	(Any Three Points)	
22		
32	Pyramid of energy is always upright:	
	The bottom of the pyramid of energy is occupied by the producers, there is a gradual decrease of energy transfer at successive tropic levels from producers to the upper levels, therefore the pyramid of energy is always upright.	3
	(or)	
	Diagram	

Differenti	ate Embryoid	ls and Artific	cial Seeds:	27
	Embryoids		Artificial	Seeds
differentia	llus cells tion and produ nown as Emb		Artificial Seeds seeds(synseeds) are using embryoids (so obtained through in	e produced by omatic embryos)

	PART – IV	
Ansv	5x5=25	
34 (a)	Structure of ovule:	
	Diagram	
	Chalazal end	
	Raphe	
	Nucellus	2
	Embryo sac	3
	Hillum	
	Micropyle Funicle	
	2.4	2
	Ovule structure - diagrammatic	
	Label	
	(OR)	
34 (b)	Significance of plant succession:	
	Any 5 points	5

35 (a)	Inheritance of chloroplast gene :	1	
	Example 4 O' clock plant (Mirabilis jalapa)		
	Explanation	2	
	Flowchart/Diagram	2	
35 (b)	(OR)		
33 (6)	RNA editing in plants: 1. RNA editing definition 2. Types of RNA Editing i . Substitution editing ii. Insertion / Deletion editing 3. RNA editing diagram	2	
	3. RNA editing diagram Plastid signals Nucleus Environmental signals Organelle-related genes Mitochondrial signals Transcriptional process Translation Protein RNA editing mtDNA Plastids Inter-organelle signals		
36 (a)	Applications of Bio-Technology:		
	Any 5 applications	5	
	(OR)		
36 (b)			
	Steps involved in Protoplast culture:	1	
	1. Isoloation of protoplast (macrozyme, cellulose enzyme sorbitol (or)	1	
	mannitol at pH 5.4)	1	
	2. Fusion of protoplast (PEG)		
	3. Culture of protoplast (MS liquid medium, fluorescein diacetate)	1	
	4. Selection of Somatic hybrids (Cybrid, somatic hybridization)	1	
	5. Protoplast culture diagram	•	
37 (a)	Solution to water crisis and explain its advantages:		
	1. Solution to water crisis	2	
	2. environmental benefits (Any four only)	3	
	(OR)		

37 (b)	Different types of Hydrophytes with examples:			
	1. Free floating hydrophytes	1		
	Explanation, Any one example	1		
	2. Rooted floating hydrophytes			
	Explanation, Any one example			
	3. Sub merged floating hydrophytes			
	Explanation, Any one example	1		
	4. rooted – sub merged hydrophytes			
	Explanation, Any one example			
	5. Amphibious hydrophytes	1		
	Explanation, Any one example			
38 (a)	Breeding Techniques involved developing new traits in plant breeding:			
	1. cutting and modifying the genome during the repair process by tools like CRISPR/CaS .			
	2. genome editing to introduce changes in base pairs during a technique called Oligonucleotide –directed mutagenesis (ODM).			
	3. transfering a gene from an identical or closely related species (cisgenesis).			
	4. organising process that alter gene activity without altering the DNA			
	itself (epigenetic methods)	1		
	(OR)			

38 (b)	Economic Importance of Rice and Teak:	
	Rice	
	1. Calorie rich cereal food	
	2. Flaked the rice/ parched rice	
	3. Rice brain oil	
	4. Husks	
	Teak	
	1. It is one of the best timbers of the world. carpenter friendly wood.	
	2. Railway carriage, Ship building, Bridge building 2 ½	
	3. Making boats, toys	
	4. Making plywood, door frames	

