

SHRI VIDHYABHARATHI MAT.HR.SEC.SCHOOL

SAKKARAMPALAYAM, ELACHIPALAYAM, AGARAM(PO), TIRUCHENGODE(TK), NAMAKKAL(DT) - 637 202.

CELL NO: 99655-31727

PUBLIC EXAMINATION-MARCH - 2023 XI – BIO-BOTANY – TENTATIVE ANSWER KEY

MARK: 35

I. Answer all the questions.

Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer

SECTION - I			8 x 1=8
	A TYPES	BTYPES	•
1.	c) Movement of chromosomes towards pole	a) Serotaxonomy	1
2.	a) Bacteria- crown gall	d) Phellogen	1
3.	b) Influx of K+	d) Potato,Tomato,Cotton	1
4.	b) 400 to 700nm	b) Influx of K+	1
5.	a) Serotaxonomy c) Movement of chromosomes towards pole		1
6.	d) Potato, Tomato, Cotton	a) Bacteria- crown gall	1
7.	d) Phellogen	d) Foliarbud, cauline bud	1
3.	d) Foliarbud, cauline bud	b) 400 to 700nm	1
	SECTION - II		
	Answer any four questions.		
). 10.	Plectostele: ➤ Xylem plates alternates with phloer Example: Lycopodium clavatum. Aggregate fruit with multiple fruit.	n plates.	1
IU.	Aggregate Fruit	Multiple Fruit	
S	Aggregate fruits develop from a single flower having an apocarpous pistil. Each of the free carpel is develops into a simple fruitlet. A collection of simple fruitlets	A Multiple or composite fruit develops from the whole inflorescence along with its peduncle Flowers fused together by succulent perianth Whole inflorescence forms a	2
	makes an aggregate fruit . Example: <i>Magnolia</i> , Raspberry, <i>Annona, Polyalthia</i>	compact structure is called Multiple fruit. Example: Pineapple, Jack fruit, Mulberry	

11.	 Transmission electron microscope: ➤ This is the most commonly used electron microscope which provides two dimensional image. ➤ A beam of electron passes through the specimen to form an image on fluorescent screen. ➤ The magnification is 1–3 lakhs times and resolving power is 2–10 Å. 			
		dying detailed s	structrue of viruses, mycoplasma,	
12.	Enzyme	Source	uses	
	Bacterial protease	Bacillus	Biological detergents	
	Bacterial glucose isomerase	Bacillus	Fructose syrup manufacture	(any 2)
	Fungal lactase	Kluyvero- myces	Breaking down of lactose to glucose and galactose	
	Amylases	Aspergillus	Removal of starch in woven cloth production	
13.	Porous wood or Hard Example: <i>Morus</i>	d wood,	Non porous wood or Soft wood, Example: <i>Pinus</i>	
	Common in angiosper	ms	Common in gymnosperms	2
	Porous because it cont	ains vessels	Non-porous because it does not contain vessels	
	 Roots Minerals are absorbed as salts Nitrogen is present in large quantities in the atmosphere in gaseous form. The gaseous nitrogen must be fixed in the form of Nitrate salts in th soil to facilitate absorption by plant. Nitrogen fixation can occur only by Non Biological means (Industriprocesses or by lightning) and Biological means (Bacteria / Cyanobacteria Fungi) Therefore higher plants cannot utilize the atmospheric Nitrogen. 			2
	SECTION -III			3X3=9
15.	Merits ➤ The classification		19 compulsory complexity of cell structure and	
organization of thallus. ➤ It is based on the mode of nutrition ➤ Separation of fungi from plants			on	1½
	➤ It shows the phylogeny of the organisms			172
	heterotrophic or	ganisms, cell w	sta accommodate both autotrophic and vall lacking and cell wall bearing vo groups more heterogeneous.	11/2

16.			
10.	Pitcher ➤ The leaf becomes modified into a pitcher in Nepenthes and Sarracenia. In Nepenthes the basal part of the leaf is laminar and the midrib continues as a coiled tendrillar structure. The apical part of the leaf is modified into a pitcher the mouth of the pitcher is closed by a lid which is the modification of leaf apex.	3	
17.	Epidermal cell Subsidiary cell Guard cell Stomatal pore	2+1	
18.	Programmed cell death (PCD) Senescence is controlled by plants own genetic programme and death of	3	
	the plant or plant part consequent to senescence is called Programmed		
	Cell Death. In short senescence of an individual cell is called PCD. The		
	proteolytic enzymes involving PCD in plants are phytaspases and in		
- 10	animals are caspases.		
19.	Lampbrush chromosomes occur at the diplotene stage of first meiotic prophase in oocytes of an animal Salamandar and in giant nucleus of the unicellular alga <i>Acetabularia</i> . It was first observed by Flemming in 1882. The highly condensed chromosome forms the chromosomal axis, from which lateral loops of DNA extend as a result of intense RNA synthesis.	2+1	
5	Chromosome axis Matrix Chromosomal fibre		

	SECTION - IV	2X5=10	
20.	The floral characters of clitoria ternatea. Inflorescence: Solitary, Axillary		
	Flower: Complete, bisexual, pentamerous, zygomorphic	3	
	Carolla: Potale F. Papilionaceous corolla imbrigate aestivation		
	Corolla: Petals 5, Papilionaceous corolla imbricate aestivation.		
	Androecium: Stamens 10, diadelphous (9)+1 Dithecous Gynoecium: Superior ovary, unilocular, Marginal Placentation Fruit: Legume		
	Seed: Non-endospermous Floral diagram	1	
	Fioral formula Br.,Brl.,%,ಫ಼್ K _(S) ,C _s ,A ₍₉₎₊₁ , <u>G</u> ,	1	
(OR)	Economic importance of fungi :		
	 Fungi provide delicious and nutritious food called mushrooms. They recycle the minerals by decomposing the litter thus adding fertility to the soil. Dairy industry is based on a single celled fungus called yeast. They deteriorate the timber. Fungi cause food poisoning due the production of toxins. Beneficial activities 		
	Food		
	Mushrooms like Lentinus edodes, Agaricus bisporus, Volvariella volvaceae are consumed for their high nutritive value. Yeasts provide vitamin B and Eremothecium ashbyii is a rich source of Vitamin B12.	5	
	Medicine		
1	Fungi produce antibiotics which arrest the growth or destroy the bacteria. Some of the antibiotics produced by fungi include Penicillin (Penicillium notatum) Cephalosporins (Acremonium chrysogenum) Griseofulvin (Penicillium griseofulvum). Ergot alkaloids (Ergotamine) produced by Claviceps purpurea is used as vasoconstrictors.		
	Industries		
	➤ Production of Organic acid: For the commercial production of organic acids fungi are employed in the Industries. Some of the organic acids and fungi which help in the production of organic acids are: citric acid and gluconic acid – <i>Aspergillus niger</i> , Itaconic acid – <i>Aspergillus terreus</i> , Kojic acid – <i>Aspergillus oryzae</i> .		
	Bakery and Brewery		
	> Yeast(Saccharomyces cerevisiae) is used for fermentation of sugars to		

yield alcohol.Bakeries utilize yeast for the production of Bakery products like Bread, buns, rolls etc., *Penicillium roquefortii* and *Penicillium camemberti* were employed in cheese production.

Production of enzymes

Aspergillus oryzae, Aspergillus niger were employed in the production of enzymes like amylase, protease, lactase etc. Rennet which helps in the coagulation of milk in cheese manufacturing is derived from Mucor spp.

Agriculture

- Mycorrhiza forming fungi like Rhizoctonia, Phallus, Scleroderma helps in absorption of water and minerals.
- Fungi like *Beauveria bassiana*, *Metarhizium anisopliae* are used as Biopesticides to eradicate the pests of crops. Gibberellin, produced by a fungus *Gibberella fujikuroi* induce the plant growth and is used as growth promoter.

Harmful activities

Fungi like Amanita phalloides, Amanita verna, Boletus satanus are highly poisonous due to the production of Toxins. These fungi are commonly referred as "Toad stools".

Anatomical differences between dicot root and monocot root

S.N	Characters	Dicot root	Monocot root
1.	Pericyle	Gives rise to lateral roots, phellogen and a part of vascular cambium.	Gives rise to lateral roots only.
2.	Vascular tissue	Usually limited number of xylem and phloem strips.	Usually more number of xylem and phloem strips,
3.	Conjunctive tissue	Parenchymatous; Its cells are differentiated into vascular cambium.	Mostly sclerenchymatous but sometimes parenchymatous. It is never differentiated in to vascular cambium.
4.	Cambium	It appears as a secondary meristem at the time of secondary growth.	It is altogether absent.
5.	xylem	Usually tetrach	Usually polyarch

(UK) Ganongs potometer

- > Ganongs potometer is used to measure the rate of transpiration indirectly. In this, the amount of water absorbed is measured and assumed that this amount is equal to the amount of water transpired.
- Apparatus consists of a horizontal graduated tube which is bent in opposite directions at the ends. One bent end is wide and the other is narrow. A reservoir is fixed to the horizontal tube near the wider end. The reservoir has a stopcock to regulate water flow.
- ➤ The apparatus is filled with water from reservoir. A twig or a small plant is fixed to the wider arm through a split cock. The other bent end

3

5

water.

An air bubble is introduced into the graduated tube at the narrow end (Figure 11.19). keep this apparatus in bright sunlight and observe. As transpiration takes place, the air bubble will move towards the twig. The loss is compensated by water absorption through the xylem portion of the twig. Thus, the rate of water absorption is equal to the rate of transpiration.

Reservoir
Graduated Tube
Air bubble Coloured water

2

MARK ANALYSIS

(WITHOUT CHOICE)

PART	Questions	Total	Book Back	Interior
		Questions	Questions	Questions
I	1 Mark	8	5	2+1(NEET)
II	2 Marks	6	4	2
6	3 Marks	5	2	3
IV	5 Marks	4	2	2
Total Marks		55	29	26
Percentage		100 %	53%	47 %

DEPARTMENT OF BOTANY

P.GEETHA M.SC., M.Ed., (HOD) - 8428971051

A. SIVAPRAKASAM, M.SC.,B.Ed., - 9944804458

SHRI VIDHYABHARATHI MATRIC HR.SEC.SCHOOL, SAKKARAMPALAYAM,
AGARAM (PO) ELACHIPALAYAM,

TIRUCHENGODE (TK), NAMAKKAL (DT) PIN-637202.

Cell: 99655-31727, 94432-31727.

SHRI VIDHYABHARATHI MATRIC. HR. SEC. SCHOOL

SAKKARAMPALAYAM, AGARAM POST, ELACHIPALAYAM, THIRUCHENGODE TK, NAMAKKAL DT - 637 202.

25 Years of Excellence in Education

ADMISSIONSOPEN FOR 2023-24

CRASH COURSE

TAMIL MEDIUM 7.5 % MATRIC & CBSE

SCHOOL ACHIEVEMENT

X 2021-2022 492 500

XI 2021-2022 588 600 XII 2021-2022 590 600 NEET
2021-2022
640
720

ஒவ்வொரு குழந்தையின் மீதும் தனிகவனம்

94421 33050 99768 73243

L.K.G. முதல் +2 வரை அட்மிசன் முன்பதிவு நடைபெறுகிறது.

2021-2022 ஆம் ஆண்டில் MBBS கல்லூரியில் சேர்ந்த மாணவர்கள்

GOVT MOHAN KUMARAMANGALAM MEDICAL COLLEGE SALEM

VASANTHAKUMAR S GOVT MOHAN

R.S.MIRUTHULA BOYT MEDICAL COLLEGE, VELLORE

M.HRISHRAJ GOVT MEDICAL COLLEGE ARIVALUI

VARSHAS GOVT MEDICAL COLLEGE VILLIPURAN

ARUNKUMAR M GOVT MEDICAL COLLEGE

L.K.G. முதல் +2 வரை 2023 - 2024 ஆம் கல்வியாண்டிற்கான அட்மிசன் முன்பதிவு நடைபெறுகிறது.

2021-2022 ஆம் ஆண்டில் ANNA UNIVERSITY & GOVT. ENGG. கல்லூரியில் சேர்ந்த மாணவர்கள்

RAKSHITHA M

BUTHISH R

ABISHECK V

2021-2022 ஆம் ஆண்டில் C.A., B.Com., COURSE சேர்ந்த ம

2021-2022 ஆம் ஆண்டில் JEE-MAIN தேர்வில் சிறந்த மதிப்பெண் பெற்ற மாணவர்கள்

மாதத்தில் ஒவ்வொரு சனி மற்றும் ஞாயிற்றுக்கிழமைகளில்

10 மற்றும் 11- ஆம் வகுப்பு சேர்க்கைக்கான

SCHOLARSHIP ENTRANCE EXAM நடைபெறும்

Time: 10.00am Onwards

Venue: SVB SCHOOL CAMPUS.